000 03412nab a2200349 c 4500
001 vtls000673519
003 RU-ToGU
005 20230319220005.0
007 cr |
008 200116|2019 enk s a eng dd
024 7 _a10.1016/j.jqsrt.2019.02.011
_2doi
035 _ato000673519
040 _aRU-ToGU
_brus
_cRU-ToGU
245 1 0 _aHigh sensitivity cavity ring down spectroscopy of N2O near 1.74 m
_cT. Bertin, D. Mondelain, E. V. Karlovets [et al.]
520 3 _aIn spite of being a greenhouse gas with a large global warming potential, the absorption spectrum of nitrous oxide in the near infrared is insufficiently characterized. In the present work, the spectral region near 1.74 m (5696–5910 cm−1) is investigated by high sensitivity cavity ring down spectroscopy (CRDS). The noise level of the CRDS spectra corresponds to a typical minimum detectable absorption, αmin, below 10-10 cm−1. 3326 transitions are measured and rovibrationally assigned to 50 bands of five nitrous oxide isotopologues (14N216O, 14N15N16O, 15N14N16O, 14N218O and 14N217O) in natural isotopic abundance. The assigned weakest lines have an intensity below 10−28 cm/molecule. For comparison, only three 14N216O bands are included in the HITRAN database in the region, with a 2  10−25 cm/molecule intensity cut off. The rovibrational assignments were performed by comparison with predictions performed for each isotopologue in the frame of the effective operator approach. The overall quality of the predictions is satisfactory for line positions. Deviations larger than 0.1 cm−1 are nevertheless noted for 14N216O and 14N218O. The spectroscopic parameters of the upper level of the observed bands were derived from the standard band-by-band fit of the measured line positions. A significant number of bands were found to be perturbed by local rovibrational perturbations and in some cases, extra lines due to an intensity transfer could be assigned. The interaction mechanisms and the perturbers were univocally identified on the basis of the effective Hamiltonian model. In particular, interpolyad couplings were evidenced indicating that the polyad version of the effective Hamiltonian has to be extended to include Coriolis and interpolyad anharmonic interactions. No satisfactory modeling of the N2O line intensities is yet available in the region. The CRDS intensity values derived in this work provide a solid set of measurements for future semi-empirical intensity modeling in the region.
653 _aизотопологи
653 _aоксид азота
653 _aвращательная спектроскопия
653 _aэффективные гамильтонианы
655 4 _aстатьи в журналах
_9879358
700 1 _aMondelain, Didier
_9150419
700 1 _aKarlovets, Ekaterina Vladimirovna
_9100961
700 1 _aKassi, Samir
_9150420
700 1 _aPerevalov, Valery I.
_999427
700 1 _aCampargue, Alain
_9150421
700 1 _aBertin, Thibault
_9499643
773 0 _tJournal of Quantitative Spectroscopy and Radiative Transfer
_d2019
_gVol. 229. P. 40-49
_x0022-4073
852 4 _aRU-ToGU
856 4 _uhttp://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000673519
908 _aстатья
999 _c462073