Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Role of vortex-like motion in fracture of coating-substrate system under contact loading A. Y. Smolin, G. M. Eremina, E. V. Shilko, S. G. Psakhie

Contributor(s): Smolin, Alexey Yu | Shilko, Evgeny V | Psakhie, Sergey G, 1952-2018 | Eremina, Galina MMaterial type: ArticleArticleSubject(s): вихревое движение | контактная нагрузка | наноструктурированные покрытия | упругие волны | метод подвижных клеточных автоматов | 3D-моделированиеGenre/Form: статьи в журналах Online resources: Click here to access online In: Procedia structural integrity Vol. 2. P. 1781-1788Abstract: Deformation of a heterogeneous material containing internal interfaces or/and free surfaces is accompanied by collective vortex motion near these boundaries. One should expect that rotational motion in nanomaterials takes place at different scales, from the atomic scale to the macroscopic one. Nevertheless such a fundamental factor as elastic vortex motion in material formed during dynamic loading still remains out of discussion. The aim of this paper is revealing the role of vortex displacements in contact interaction of the strengthening coating with a hard counter-body by means of 3D modeling using movable cellular automata (MCA). MCA method is an efficient numerical method in particle mechanics, which assumes that the material is composed of a certain amount of elementary objects interacting among each other according to many-particle forces. In this paper MCA method is applied to 3D modeling deformation of the coating-substrate system under its contact loading by the rigid indenter. Main attention of the research is focused on the role of vortex structures in the velocity fields in elastic and non-elastic deformation of the strengthening coating and substrate. The mechanical properties of the model coating correspond to multifunctional nanostructured film and the properties of the substrate, to nanostructured titanium. The loading is performed by a hard conical indenter with various ratios of normal and tangential components. The peculiarities of the velocity vortex formation and propagation, as well as interaction with the structural elements are studied.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: с. 1788

Deformation of a heterogeneous material containing internal interfaces or/and free surfaces is accompanied by collective vortex motion near these boundaries. One should expect that rotational motion in nanomaterials takes place at different scales, from the atomic scale to the macroscopic one. Nevertheless such a fundamental factor as elastic vortex motion in material formed during dynamic loading still remains out of discussion. The aim of this paper is revealing the role of vortex displacements in contact interaction of the strengthening coating with a hard counter-body by means of 3D modeling using movable cellular automata (MCA). MCA method is an efficient numerical method in particle mechanics, which assumes that the material is composed of a certain amount of elementary objects interacting among each other according to many-particle forces. In this paper MCA method is applied to 3D modeling deformation of the coating-substrate system under its contact loading by the rigid indenter. Main attention of the research is focused on the role of vortex structures in the velocity fields in elastic and non-elastic deformation of the strengthening coating and substrate. The mechanical properties of the model coating correspond to multifunctional nanostructured film and the properties of the substrate, to nanostructured titanium. The loading is performed by a hard conical indenter with various ratios of normal and tangential components. The peculiarities of the velocity vortex formation and propagation, as well as interaction with the structural elements are studied.

There are no comments on this title.

to post a comment.
Share