Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Study of iron oxide magnetic nanoparticles obtained via pulsed laser ablation of iron in air V. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin [et al.]

Contributor(s): Shabalina, Anastasiia V | Lapin, Ivan N | Goncharova, Darya A | Velikanov, Dmitry A | Sokolov, Alexey E | Svetlichnyi, Valerii AMaterial type: ArticleArticleContent type: Текст Media type: электронный Subject(s): импульсная лазерная абляция | магнитные наночастицы | оксид железаGenre/Form: статьи в журналах Online resources: Click here to access online In: Applied surface science Vol. 462. P. 226-236Abstract: Magnetic nanoparticles were obtained using the nanosecond pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns) of an iron target in air at atmospheric pressure. The particles obtained were further annealed at four different temperatures. The composition, structure and properties of all obtained powders were investigated using X-ray diffraction (XRD), DSC, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, TEM, SAED and other techniques. The initial sample was found to contain monoclinic magnetite and iron nitrides. Presumably, magnetite presents in the form of spherical particles with the distribution maximum of 12–15 nm, and nitrides take the form of lamellas and rolls. Thermal treatment of the sample led to particle enlargement and phase transformations, first, to cubic magnetite, then to a Fe3O4, α-Fe2O3 and γ-Fe2O3 mixture, and finally to the pure hematite phase. Zeta-potential, BET surface area and magnetic properties changed with the annealing as well. The obtained materials exhibited different properties that make them in demand in different fields, from biomedicine to technology.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Magnetic nanoparticles were obtained using the nanosecond pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns) of an iron target in air at atmospheric pressure. The particles obtained were further annealed at four different temperatures. The composition, structure and properties of all obtained powders were investigated using X-ray diffraction (XRD), DSC, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, TEM, SAED and other techniques. The initial sample was found to contain monoclinic magnetite and iron nitrides. Presumably, magnetite presents in the form of spherical particles with the distribution maximum of 12–15 nm, and nitrides take the form of lamellas and rolls. Thermal treatment of the sample led to particle enlargement and phase transformations, first, to cubic magnetite, then to a Fe3O4, α-Fe2O3 and γ-Fe2O3 mixture, and finally to the pure hematite phase. Zeta-potential, BET surface area and magnetic properties changed with the annealing as well. The obtained materials exhibited different properties that make them in demand in different fields, from biomedicine to technology.

There are no comments on this title.

to post a comment.
Share