Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Neoarchean tectonic history of the Teton Range: Record of accretion against the present-day western margin of the Wyoming Province R. B. Frost, S. M. Swapp, C. D. Frost [et al.]

Contributor(s): Swapp, Susan M | Frost, Carol D | Bagdonas, Davin A | Chamberlain, Kevin R | Frost, Ronald BMaterial type: ArticleArticleContent type: Текст Media type: электронный Subject(s): неоархейская история | архейские гнейсы | гранулитовый метаморфизм | метаосадочные породы | лейкограниты | Титон, горный хребет | Вайоминг, штатGenre/Form: статьи в журналах Online resources: Click here to access online In: Geosphere Vol. 14, № 3. P. 1008-1030Abstract: Although Archean gneisses of the Teton Range crop out over an area of only 50 × 15 km, they provide an important record of the Archean history of the Wyoming Province. The northern and southern parts of the Teton Range record different Archean histories. The northern Teton Range preserves evidence of 2.69–2.68 Ga high-pressure granulite metamorphism (>12 kbar, ∼900 °C) followed by tectonic assembly with isotopically juvenile quartzofeldspathic metasedimentary rocks under high-pressure amphibolite-facies conditions (∼7 kbar, 675 °C) and intrusion of extensive leucogranites. Together, these events record one of the oldest continent-continent collisional orogenies on Earth. Geochemical, thermobarometric, and geochronological data from the gneisses of the southern Teton Range show that this part of the uplift records a geologic history that is distinct from the northern part. It contains a variety of quartzofeldspathic gneisses, including a 2.80 Ga granodioritic orthogneiss and the 2.69–268 Ga Rendezvous Gabbro. None of these preserves evidence of the granulite metamorphism seen in the northern Teton Range. Instead, they have affinities with rocks elsewhere in the Wyoming Province. The boundary between the northern and southern areas is occupied by the Moran deformation zone, a broad zone of high strain along which the northern and southern areas were assembled at ca. 2.62 Ga under moderate pressures and temperatures (T = 540–600 °C and P < 5.0 kbar). The final Archean event of the Teton Range was the emplacement at 2.55 Ga of the Mount Owen batholith, a peraluminous leucogranite that intrudes the Moran deformation zone. The rocks of the northern Teton Range record events that are not present elsewhere in the Wyoming Province. We propose that they formed at 2.70–2.67 Ga some place distal to the Wyoming Province and that they were accreted from the west against the Wyoming Province along the Moran deformation zone at ca. 2.62 Ga. This date is coeval with deformation and metamorphism in the southern accreted terranes and indicates that at this time, accretion was taking place along both the southern margin and western margins of the Wyoming Province. GeoRef Subject absolute age deformation geochemistry Archean gneisses igneous rocks leucogranite gabbros granites intrusions Precambrian orthosilicates silicates zircon nesosilicates plutonic rocks tectonics zircon group metamorphic rocks structural analysis U/Pb Wyoming United States Wyoming Province
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: с. 1027-1030

Although Archean gneisses of the Teton Range crop out over an area of only 50 × 15 km, they provide an important record of the Archean history of the Wyoming Province. The northern and southern parts of the Teton Range record different Archean histories. The northern Teton Range preserves evidence of 2.69–2.68 Ga high-pressure granulite metamorphism (>12 kbar, ∼900 °C) followed by tectonic assembly with isotopically juvenile quartzofeldspathic metasedimentary rocks under high-pressure amphibolite-facies conditions (∼7 kbar, 675 °C) and intrusion of extensive leucogranites. Together, these events record one of the oldest continent-continent collisional orogenies on Earth. Geochemical, thermobarometric, and geochronological data from the gneisses of the southern Teton Range show that this part of the uplift records a geologic history that is distinct from the northern part. It contains a variety of quartzofeldspathic gneisses, including a 2.80 Ga granodioritic orthogneiss and the 2.69–268 Ga Rendezvous Gabbro. None of these preserves evidence of the granulite metamorphism seen in the northern Teton Range. Instead, they have affinities with rocks elsewhere in the Wyoming Province. The boundary between the northern and southern areas is occupied by the Moran deformation zone, a broad zone of high strain along which the northern and southern areas were assembled at ca. 2.62 Ga under moderate pressures and temperatures (T = 540–600 °C and P < 5.0 kbar). The final Archean event of the Teton Range was the emplacement at 2.55 Ga of the Mount Owen batholith, a peraluminous leucogranite that intrudes the Moran deformation zone. The rocks of the northern Teton Range record events that are not present elsewhere in the Wyoming Province. We propose that they formed at 2.70–2.67 Ga some place distal to the Wyoming Province and that they were accreted from the west against the Wyoming Province along the Moran deformation zone at ca. 2.62 Ga. This date is coeval with deformation and metamorphism in the southern accreted terranes and indicates that at this time, accretion was taking place along both the southern margin and western margins of the Wyoming Province. GeoRef Subject absolute age deformation geochemistry Archean gneisses igneous rocks leucogranite gabbros granites intrusions Precambrian orthosilicates silicates zircon nesosilicates plutonic rocks tectonics zircon group metamorphic rocks structural analysis U/Pb Wyoming United States Wyoming Province

There are no comments on this title.

to post a comment.
Share