Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Quantitative imaging of white and gray matter remyelination in the cuprizone demyelination model using the macromolecular proton fraction M. Y. Khodanovich, A. O. Pishchelko, V. Y. Glazacheva [et al.]

Contributor(s): Pishchelko, Anna O | Glazacheva, Valentina Y | Pan, Edgar S | Akulov, Andrey E | Svetlik, Mikhail V | Tyumentseva, Yana | Ananina, Tatyana V | Yarnykh, Vasily L | Khodanovich, Marina YuMaterial type: ArticleArticleSubject(s): магнитно-резонансная томография | олигодендроциты | иммуногистохимия | клетки-предшественники олигодендроцитов | ремиелинизация | демиелинизация | купризоновая модель | макромолекулярная протонная фракция | миелинGenre/Form: статьи в журналах Online resources: Click here to access online In: Cells Vol. 8, № 10. P. 1204 (1-18)Abstract: Macromolecular proton fraction (MPF) has been established as a quantitative clinically-targeted MRI myelin biomarker based on recent demyelination studies. This study aimed to assess the capability of MPF to quantify remyelination using the murine cuprizone-induced reversible demyelination model. MPF was measured in vivo using the fast single-point method in three animal groups (control, cuprizone-induced demyelination, and remyelination after cuprizone withdrawal) and compared to quantitative immunohistochemistry for myelin basic protein (MBP), myelinating oligodendrocytes (CNP-positive cells), and oligodendrocyte precursor cells (OPC, NG2-positive cells) in the corpus callosum, caudate putamen, hippocampus, and cortex. In the demyelination group, MPF, MBP-stained area, and oligodendrocyte count were significantly reduced, while OPC count was significantly increased as compared to both control and remyelination groups in all anatomic structures (p < 0.05). All variables were similar in the control and remyelination groups. MPF and MBP-stained area strongly correlated in each anatomic structure (Pearson's correlation coefficients, r = 0.80-0.90, p < 0.001). MPF and MBP correlated positively with oligodendrocyte count (r = 0.70-0.84, p < 0.01 for MPF; r = 0.81-0.92, p < 0.001 for MBP) and negatively with OPC count (r = -0.69--0.77, p < 0.01 for MPF; r = -0.72--0.89, p < 0.01 for MBP). This study provides immunohistological validation of fast MPF mapping as a non-invasive tool for quantitative assessment of de- and remyelination in white and gray matter and indicates the feasibility of using MPF as a surrogate marker of reparative processes in demyelinating diseases.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: 72 назв.

Macromolecular proton fraction (MPF) has been established as a quantitative clinically-targeted MRI myelin biomarker based on recent demyelination studies. This study aimed to assess the capability of MPF to quantify remyelination using the murine cuprizone-induced reversible demyelination model. MPF was measured in vivo using the fast single-point method in three animal groups (control, cuprizone-induced demyelination, and remyelination after cuprizone withdrawal) and compared to quantitative immunohistochemistry for myelin basic protein (MBP), myelinating oligodendrocytes (CNP-positive cells), and oligodendrocyte precursor cells (OPC, NG2-positive cells) in the corpus callosum, caudate putamen, hippocampus, and cortex. In the demyelination group, MPF, MBP-stained area, and oligodendrocyte count were significantly reduced, while OPC count was significantly increased as compared to both control and remyelination groups in all anatomic structures (p < 0.05). All variables were similar in the control and remyelination groups. MPF and MBP-stained area strongly correlated in each anatomic structure (Pearson's correlation coefficients, r = 0.80-0.90, p < 0.001). MPF and MBP correlated positively with oligodendrocyte count (r = 0.70-0.84, p < 0.01 for MPF; r = 0.81-0.92, p < 0.001 for MBP) and negatively with OPC count (r = -0.69--0.77, p < 0.01 for MPF; r = -0.72--0.89, p < 0.01 for MBP). This study provides immunohistological validation of fast MPF mapping as a non-invasive tool for quantitative assessment of de- and remyelination in white and gray matter and indicates the feasibility of using MPF as a surrogate marker of reparative processes in demyelinating diseases.

There are no comments on this title.

to post a comment.
Share