Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Magmatism of the Devonian Altai-Sayan Rift System: Geological and geochemical evidence for diverse plume-lithosphere interactions A. A. Vorontsov, V. Yarmolyuk, S. Dril [et al.]

Contributor(s): Vorontsov, Alexander A | Yarmolyuk, Vladimir | Dril, Sergei | Ernst, Richard E | Perfilova, Olga Y | Grinev, Oleg M | Komaritsyna, TatyanaMaterial type: ArticleArticleContent type: Текст Media type: электронный Subject(s): девонский магматизм | несовместимые элементы | плюм-литосферные взаимодействия | Алтае-Саянский регионGenre/Form: статьи в журналах Online resources: Click here to access online In: Gondwana research Vol. 89. P. 193-219Abstract: The geodynamic environment of the 407–392 Ma Altai-Sayan Rift System is characterized using previously published and new original data on whole rock, trace and Sr-Nd isotopic compositions, along with U-Pb zircon ages. Five magmatic associations are present: basalt (basalts and basaltic trachyandesites), continuous (basalts, andesites, dacite-rhyolites), alkaline (basalts, nephelinite, tephrite, phonotephrite, phonolite, teralite, ijolite-urthite, foyaite, nepheline and alkaline syenite), bimodal (trachybasalts, trachyrhyolites-pantellerites and peralkaline granites) and ultramafic-mafic (picrites and picrodolerites). Mafic rocks of basalt, continuous, alkaline, and bimodal associations exhibit a wide variation of TiO2 (from 1.05 to 4.05 wt%) and are compositionally intermediate between intraplate basalts of OIB type and basalts of active continental margins IAB type. The TiO2 content in these mafic rocks correlates directly with the content of large ion lithophile elements (LILE), rare-earth elements (REE), high field strength elements (HSFE), and particularly with Nb and Ta. The basaltic samples have positive εNd(395) values (+3.4 to +7.7) and a large range of εSr(395) values (−13.6 to +12.6). εSr(395) decreases with increasing TiO2 abundance. Pantellerites and alkaline granites have ore-level concentrations of Nb, Ta, Zr, Hf, REE; and they have similar Sr and Nd isotope parameters to those of the high-Ti basalts. This indicates their origin via fractionation of mantle magmas. Rhyolite samples are depleted in rare incompatible elements, but have low positive εNd(395) values (+1.5 to +1.8), and εSr(395) values (+16.6 to +20.6), and they compositionally resemble the rocks produced from anatectic magmas of crustal origin. Whole-rock elemental and isotopic data suggest that the mafic rocks were likely derived from lithospheric mantle that was metasomatized during the prior Caledonian accretion/subduction event. In combination with the field relationship and regional geology, our study suggests that the rock associations from the Devonian Altai-Sayan Rift System were derived by the activity of mantle plumes.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: с. 215-219

The geodynamic environment of the 407–392 Ma Altai-Sayan Rift System is characterized using previously published and new original data on whole rock, trace and Sr-Nd isotopic compositions, along with U-Pb zircon ages. Five magmatic associations are present: basalt (basalts and basaltic trachyandesites), continuous (basalts, andesites, dacite-rhyolites), alkaline (basalts, nephelinite, tephrite, phonotephrite, phonolite, teralite, ijolite-urthite, foyaite, nepheline and alkaline syenite), bimodal (trachybasalts, trachyrhyolites-pantellerites and peralkaline granites) and ultramafic-mafic (picrites and picrodolerites). Mafic rocks of basalt, continuous, alkaline, and bimodal associations exhibit a wide variation of TiO2 (from 1.05 to 4.05 wt%) and are compositionally intermediate between intraplate basalts of OIB type and basalts of active continental margins IAB type. The TiO2 content in these mafic rocks correlates directly with the content of large ion lithophile elements (LILE), rare-earth elements (REE), high field strength elements (HSFE), and particularly with Nb and Ta. The basaltic samples have positive εNd(395) values (+3.4 to +7.7) and a large range of εSr(395) values (−13.6 to +12.6). εSr(395) decreases with increasing TiO2 abundance. Pantellerites and alkaline granites have ore-level concentrations of Nb, Ta, Zr, Hf, REE; and they have similar Sr and Nd isotope parameters to those of the high-Ti basalts. This indicates their origin via fractionation of mantle magmas. Rhyolite samples are depleted in rare incompatible elements, but have low positive εNd(395) values (+1.5 to +1.8), and εSr(395) values (+16.6 to +20.6), and they compositionally resemble the rocks produced from anatectic magmas of crustal origin. Whole-rock elemental and isotopic data suggest that the mafic rocks were likely derived from lithospheric mantle that was metasomatized during the prior Caledonian accretion/subduction event. In combination with the field relationship and regional geology, our study suggests that the rock associations from the Devonian Altai-Sayan Rift System were derived by the activity of mantle plumes.

There are no comments on this title.

to post a comment.
Share