Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach M. Izadi, B. Bastani, M. A. Sheremet
Material type: ArticleContent type: Текст Media type: электронный Subject(s): естественная конвекция | численное моделирование | Рэлея-Бенара конвективная неустойчивость | наножидкостиGenre/Form: статьи в журналах Online resources: Click here to access online In: Advanced powder technology Vol. 31, № 6. P. 2493-2504Abstract: This study is a computational investigation of transient thermogravitational energy transport in H2O/Al2O3 nanoliquid and water-based copper/aluminum oxide hybrid nanofluid (water/Al2O3-Cu) inside a horizontal isosceles triangular enclosure with porous medium. The governing equations for two-phase mixture flow have been derived by the use of Darcy-Brinkman model for porous media without the Forchheimer term (inertia loss). The control equations have been discretized using the finite volume technique. The effects of porosity factor, Rayleigh number, and Darcy number on the liquid motion and transient energy transport have been studied. The results have shown that convective thermal transmission in the nanofluid inside the triangular cavity generally consists of three phases: initial, transient, and quasi-steady, all of which are described in detail. It has been found that a rise of the porosity factor, Rayleigh number, or Darcy number always leads to an increment of the average Nusselt number and energy transport intensity. It has been also observed that with a rise of the Darcy number and strengthening of flow motion (convection), the instability in both flow and temperature fields increases and the distribution of isotherms and streamlines becomes completely asymmetric.Библиогр.: 60 назв.
This study is a computational investigation of transient thermogravitational energy transport in H2O/Al2O3 nanoliquid and water-based copper/aluminum oxide hybrid nanofluid (water/Al2O3-Cu) inside a horizontal isosceles triangular enclosure with porous medium. The governing equations for two-phase mixture flow have been derived by the use of Darcy-Brinkman model for porous media without the Forchheimer term (inertia loss). The control equations have been discretized using the finite volume technique. The effects of porosity factor, Rayleigh number, and Darcy number on the liquid motion and transient energy transport have been studied. The results have shown that convective thermal transmission in the nanofluid inside the triangular cavity generally consists of three phases: initial, transient, and quasi-steady, all of which are described in detail. It has been found that a rise of the porosity factor, Rayleigh number, or Darcy number always leads to an increment of the average Nusselt number and energy transport intensity. It has been also observed that with a rise of the Darcy number and strengthening of flow motion (convection), the instability in both flow and temperature fields increases and the distribution of isotherms and streamlines becomes completely asymmetric.
There are no comments on this title.