Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

A hybrid molecular sensitizer for triplet fusion upconversion X. Wang, X. Wang, G. V. Baryshnikov [et al.]

Contributor(s): Wang, Xinyu | Wang, Xing | Baryshnikov, Gleb V | Valiev, Rashid R | Fan, Rongwei | Lu, Songtao | Ågren, Hans | Chen, GuanyingMaterial type: ArticleArticleContent type: Текст Media type: электронный Subject(s): лантаноиды | нанокристаллы | триплетыGenre/Form: статьи в журналах Online resources: Click here to access online In: Chemical engineering journal Vol. 426. P. 131282 (1-8)Abstract: Triplet fusion upconversion is useful for a broad spectrum of applications ranging from solar cells, photoredox catalysis, to biophotonics applications, especially in the near-infrared (NIR,>700 nm) range. This upconverting system typically demands efficient conversion of spin-singlet harvested energy through intersystem crossing to spin-triplet states, accessible only in rare metallic-coordinating macrocycle compounds or heavy-metal-containing semiconductor quantum dots for triplet sensitization. Herein, we describe an organic–inorganic system for NIR-to-visible triplet fusion upconversion, interfacing commonly-seen, non-metallic, infrared dyes (IR806, IR780, indyocynine green, and CarCl) and lanthanide nanocrystal (sodium ytterbium fluoride) as a hybrid molecular sensitizer, which extracts molecular spin-singlet energy to nanocrystal-enriched ytterbium dopants at ~48% efficiency (IR806, photoexciation at 808 nm). Moreover, ytterbium sub-lattice energy migration increases the interaction possibility between the nanocrystal and the freely-diffusing rubrenes in solution, resulting in 24-fold (IR806) to 1740-fold (indocyanine green) upconversion (600 nm) increase, depending on the IR dye type, as compared to the one without ytterbium nanotransducers. Ab initio quantum chemistry calculations identify enhanced spin-orbital coupling in the ytterbium-IR806 complex and high energy transfer rate in the ytterbium-rubrene interaction (1010 s 1). Employing inorganic lanthanide nanocrystals as nanotransducers unleashes the potential use of non-metallic infrared organic dyes for triplet fusion upconversion.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: 45 назв.

Triplet fusion upconversion is useful for a broad spectrum of applications ranging from solar cells, photoredox catalysis, to biophotonics applications, especially in the near-infrared (NIR,>700 nm) range. This upconverting system typically demands efficient conversion of spin-singlet harvested energy through intersystem crossing to spin-triplet states, accessible only in rare metallic-coordinating macrocycle compounds or heavy-metal-containing semiconductor quantum dots for triplet sensitization. Herein, we describe an organic–inorganic system for NIR-to-visible triplet fusion upconversion, interfacing commonly-seen, non-metallic, infrared dyes (IR806, IR780, indyocynine green, and CarCl) and lanthanide nanocrystal (sodium ytterbium fluoride) as a hybrid molecular sensitizer, which extracts molecular spin-singlet energy to nanocrystal-enriched ytterbium dopants at ~48% efficiency (IR806, photoexciation at 808 nm). Moreover, ytterbium sub-lattice energy migration increases the interaction possibility between the nanocrystal and the freely-diffusing rubrenes in solution, resulting in 24-fold (IR806) to 1740-fold (indocyanine green) upconversion (600 nm) increase, depending on the IR dye type, as compared to the one without ytterbium nanotransducers. Ab initio quantum chemistry calculations identify enhanced spin-orbital coupling in the ytterbium-IR806 complex and high energy transfer rate in the ytterbium-rubrene interaction (1010 s 1). Employing inorganic lanthanide nanocrystals as nanotransducers unleashes the potential use of non-metallic infrared organic dyes for triplet fusion upconversion.

There are no comments on this title.

to post a comment.
Share