Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Complex Plasmas electronic resource Scientific Challenges and Technological Opportunities / edited by Michael Bonitz, Jose Lopez, Kurt Becker, Hauke Thomsen.

Contributor(s): Bonitz, Michael [editor.] | Lopez, Jose [editor.] | Becker, Kurt [editor.] | Thomsen, Hauke [editor.] | SpringerLink (Online service)Material type: TextTextSeries: Springer Series on Atomic, Optical, and Plasma PhysicsPublication details: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XIII, 491 p. 240 illus., 127 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783319054377Subject(s): physics | Physics | Plasma Physics | Numerical and Computational Physics | Nanoscale Science and Technology | Semiconductors | Surface and Interface Science, Thin FilmsDDC classification: 530.44 LOC classification: QC717.6-718.8Online resources: Click here to access online
Contents:
Phase Transitions in Dusty Plasmas -- Introduction to Streaming Complex Plasmas A: Attraction of Like-Charged Particles -- Introduction to Streaming Complex Plasmas B: Theoretical Description of Wake Effects -- Quantum Hydrodynamics -- Introduction to Configuration Path Integral Monte Carlo -- Calorimetric Probes for Energy Flux Measurements in Process Plasmas -- Fundamental and Applied Studies of Molecular Plasmas Using Infrared Absorption Techniques -- Surface Electrons at Plasma Walls -- Characterization of Local Structures in Plasma Deposited Semiconductors by X-Ray Absorption Spectroscopy -- Kinetic Monte Carlo Simulations of Cluster Growth and Diffusion in Metal-Polymer Nanocomposites -- Microcavity and Microchannel Plasmas: General Characteristics and Emerging Applications -- Plasma Electrochemistry: A Novel Chemical Process for the Synthesis and Assembly of Nanomaterials -- Progress in Large-Scale Ozone Generation Using Microplasmas -- Dental Applications of Atmospheric-Pressure Non-Thermal Plasmas.
In: Springer eBooksSummary: This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present, and an overview of their potential technological applications. Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nanometer- to micrometer-sized particles, negative ions, molecules and radicals, and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas, including calorimetric probe methods, IR absorption techniques and X-ray absorption spectroscopy. The final part of the book reviews the emerging applications of microcavity and microchannel plasmas, the synthesis and assembly of nanomaterials through plasma electrochemistry, the large-scale generation of ozone using microplasmas, and novel applications of atmospheric-pressure non-thermal plasmas in dentistry. Going beyond the scope of traditional plasma texts, the presentation is very well suited for senior undergraduate, graduate students and postdoctoral researchers specializing in plasma physics.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Phase Transitions in Dusty Plasmas -- Introduction to Streaming Complex Plasmas A: Attraction of Like-Charged Particles -- Introduction to Streaming Complex Plasmas B: Theoretical Description of Wake Effects -- Quantum Hydrodynamics -- Introduction to Configuration Path Integral Monte Carlo -- Calorimetric Probes for Energy Flux Measurements in Process Plasmas -- Fundamental and Applied Studies of Molecular Plasmas Using Infrared Absorption Techniques -- Surface Electrons at Plasma Walls -- Characterization of Local Structures in Plasma Deposited Semiconductors by X-Ray Absorption Spectroscopy -- Kinetic Monte Carlo Simulations of Cluster Growth and Diffusion in Metal-Polymer Nanocomposites -- Microcavity and Microchannel Plasmas: General Characteristics and Emerging Applications -- Plasma Electrochemistry: A Novel Chemical Process for the Synthesis and Assembly of Nanomaterials -- Progress in Large-Scale Ozone Generation Using Microplasmas -- Dental Applications of Atmospheric-Pressure Non-Thermal Plasmas.

This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present, and an overview of their potential technological applications. Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nanometer- to micrometer-sized particles, negative ions, molecules and radicals, and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas, including calorimetric probe methods, IR absorption techniques and X-ray absorption spectroscopy. The final part of the book reviews the emerging applications of microcavity and microchannel plasmas, the synthesis and assembly of nanomaterials through plasma electrochemistry, the large-scale generation of ozone using microplasmas, and novel applications of atmospheric-pressure non-thermal plasmas in dentistry. Going beyond the scope of traditional plasma texts, the presentation is very well suited for senior undergraduate, graduate students and postdoctoral researchers specializing in plasma physics.

There are no comments on this title.

to post a comment.
Share