Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

The influence of solid and liquid systems in vitro on the growth and biosynthetic characteristics of microshoot culture of Spiraea betulifolia ssp. aemiliana T. V. Zheleznichenko, D. S. Muraseva, A. S. Erst [et al.]

Contributor(s): Zheleznichenko, Tatiana V | Muraseva, Dinara S | Erst, Andrey S | Kuznetsov, Alexander A | Kulikovskiy, Maxim S | Kostikova, Vera AMaterial type: ArticleArticleContent type: Текст Media type: электронный Subject(s): cпирея | in vitro | флавоноиды | твердые питательные среды | жидкие питательные среды | фенолкарбоновые кислоты | микропобегиGenre/Form: статьи в журналах Online resources: Click here to access online In: International journal of molecular sciences Vol. 24, № 3. P. 2362 (1-15)Abstract: The paper focuses on the growth dynamics and biosynthetic characteristics of the microshoot culture of Spiraea betulifolia ssp. aemiliana obtained in vitro in agar-solidified and liquid media. Microshoots cultured in either type of media showed similar growth dynamics. The most active culture growth was observed from day 35 to day 60. A comparative analysis of the contents of flavonoids and phenol carboxylic acids showed a higher level of phenol carboxylic acids (5.3–6.84%) and a stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical–scavenging activity (half-maximal inhibitory concentration: 341 µg/mL) in S. betulifolia ssp. aemiliana microshoots grown in the liquid medium compared to the microshoots cultured in the solid medium. The flavonoid content of the cultured microshoot did not depend on the consistency of the medium. High-performance liquid chromatography (HPLC) was employed to study the profile and levels of phenolic compounds in microshoots, intact plants, and ex vitro–acclimated S. betulifolia ssp. aemiliana plants. The concentration of kaempferol glycosides was found to be higher in microshoots (1.33% in the solid medium, 1.06% in the liquid medium) compared to intact plants and ex vitro–acclimated plants. Thus, the microshoots of S. betulifolia ssp. aemiliana cultured in the liquid medium rapidly increase their biomass and are an inexpensive promising source of biologically active antioxidant substances, mainly phenol carboxylic acids and kaempferol glycosides.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: 64 назв.

The paper focuses on the growth dynamics and biosynthetic characteristics of the microshoot culture of Spiraea betulifolia ssp. aemiliana obtained in vitro in agar-solidified and liquid media. Microshoots cultured in either type of media showed similar growth dynamics. The most active culture growth was observed from day 35 to day 60. A comparative analysis of the contents of flavonoids and phenol carboxylic acids showed a higher level of phenol carboxylic acids (5.3–6.84%) and a stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical–scavenging activity (half-maximal inhibitory concentration: 341 µg/mL) in S. betulifolia ssp. aemiliana microshoots grown in the liquid medium compared to the microshoots cultured in the solid medium. The flavonoid content of the cultured microshoot did not depend on the consistency of the medium. High-performance liquid chromatography (HPLC) was employed to study the profile and levels of phenolic compounds in microshoots, intact plants, and ex vitro–acclimated S. betulifolia ssp. aemiliana plants. The concentration of kaempferol glycosides was found to be higher in microshoots (1.33% in the solid medium, 1.06% in the liquid medium) compared to intact plants and ex vitro–acclimated plants. Thus, the microshoots of S. betulifolia ssp. aemiliana cultured in the liquid medium rapidly increase their biomass and are an inexpensive promising source of biologically active antioxidant substances, mainly phenol carboxylic acids and kaempferol glycosides.

There are no comments on this title.

to post a comment.
Share