Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Terahertz Planar Antennas for Next Generation Communication electronic resource by Kumud Ranjan Jha, Ghanshyam Singh.

By: Jha, Kumud Ranjan [author.]Contributor(s): Singh, Ghanshyam [author.] | SpringerLink (Online service)Material type: TextTextPublication details: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XXI, 207 p. 141 illus., 79 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783319023410Subject(s): engineering | Microwaves | electronics | Systems engineering | Engineering | Circuits and Systems | Electronics and Microelectronics, Instrumentation | Microwaves, RF and Optical EngineeringDDC classification: 621.3815 LOC classification: TK7888.4Online resources: Click here to access online
Contents:
Terahertz Sources and Antennas -- Multilayered microstrip transmission-line -- Microstrip Antenna Design by using Electromagnetic Bandgap Material -- Patch Array Antenna on EBG Substrate -- Ring-resonator Integrated Hemi-elliptical Lens Antenna -- Design of Highly Directive Cavity type Terahertz Antenna -- Performance Analysis of an Open-Loop Resonator Loaded Terahertz Microstrip Antenna -- Comparison Method to Predict the Directivity of Terahertz Patch Antenna -- THz Frequency Selective Surface -- Development in the Terahertz Communication System.
In: Springer eBooksSummary: This book describes various methods to enhance the directivity of  planar antennas, enabling the next generation of high frequency, wireless communication.  The authors discuss various applications to the terahertz regime of the electromagnetic spectrum, with an emphasis on gain enhancement mechanisms.  The numerical models of these antennas are presented and the analytical results are supported, using commercial simulators. The multilayer substrate microstrip transmission line at terahertz frequency is also explored and a method to obtain the various parameters of this interconnect at high frequency is described.  This book will be a valuable resource for anyone needing to explore the terahertz band gap for future wireless communication, in an effort to solve the bandwidth (spectrum scarcity) problem. • Enables development of terahertz communication systems in a license-free band of the electromagnetic spectrum; • Describes methods to design a multi-layered substrate transmission line to reduce various losses in the terahertz band; • Includes methods to enhance the directivity of planar antennas using electromagnetic bandgap material, double layered substrate material and frequency selective surface (FSS) in the terahertz band.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Terahertz Sources and Antennas -- Multilayered microstrip transmission-line -- Microstrip Antenna Design by using Electromagnetic Bandgap Material -- Patch Array Antenna on EBG Substrate -- Ring-resonator Integrated Hemi-elliptical Lens Antenna -- Design of Highly Directive Cavity type Terahertz Antenna -- Performance Analysis of an Open-Loop Resonator Loaded Terahertz Microstrip Antenna -- Comparison Method to Predict the Directivity of Terahertz Patch Antenna -- THz Frequency Selective Surface -- Development in the Terahertz Communication System.

This book describes various methods to enhance the directivity of  planar antennas, enabling the next generation of high frequency, wireless communication.  The authors discuss various applications to the terahertz regime of the electromagnetic spectrum, with an emphasis on gain enhancement mechanisms.  The numerical models of these antennas are presented and the analytical results are supported, using commercial simulators. The multilayer substrate microstrip transmission line at terahertz frequency is also explored and a method to obtain the various parameters of this interconnect at high frequency is described.  This book will be a valuable resource for anyone needing to explore the terahertz band gap for future wireless communication, in an effort to solve the bandwidth (spectrum scarcity) problem. • Enables development of terahertz communication systems in a license-free band of the electromagnetic spectrum; • Describes methods to design a multi-layered substrate transmission line to reduce various losses in the terahertz band; • Includes methods to enhance the directivity of planar antennas using electromagnetic bandgap material, double layered substrate material and frequency selective surface (FSS) in the terahertz band.

There are no comments on this title.

to post a comment.
Share