Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Orientable objects in relativistic quantum theory D. M. Gitman, A. L. Shelepin

By: Gitman, Dmitri MContributor(s): Shelepin, A. LMaterial type: ArticleArticleSubject(s): релятивистская теория поля | ориентируемые объекты | внутренние симметрииGenre/Form: статьи в журналах Online resources: Click here to access online In: Russian physics journal Vol. 59, № 11. P. 1962-1970Abstract: An approach to the quantum description of the orientation of relativistic particles, generalizing the approach to nonrelativistic objects possessing orientation (in particular, a rotator) is proposed, based on the self-consistent use of two reference frames. The realization of such an approach is connected with the introduction of wave functions f (x, z) on the Poincaré group M(3,1), which depend on the coordinates xμ of the Minkowski space M(3,1)/Spin(3,1) and orientational variables assigned by the elements zβα of the matrix Z ∈Spin(3,1).The field f (x, z) is the generating function for ordinary spin-tensor fields and admits a number of symmetries. Besides the Lorentz transformations (corresponding to the action of the Poincaré group from the left and interpretable as external symmetries), transformations of a reference frame associated with an orientable object (corresponding to the action of the Poincaré group from the right and interpretable as internal symmetries) are applicable to orientable objects. In addition to the six quantum numbers assigned by the Casimir operators and the left generators, quantum numbers arise here that are assigned by the right generators and are associated with internal symmetries. The assumption that the internal symmetries of the theory of orientable objects are local leads to gauge theories describing the electroweak and gravitational interactions
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: 27 назв.

An approach to the quantum description of the orientation of relativistic particles, generalizing the approach to nonrelativistic objects possessing orientation (in particular, a rotator) is proposed, based on the self-consistent use of two reference frames. The realization of such an approach is connected with the introduction of wave functions f (x, z) on the Poincaré group M(3,1), which depend on the coordinates xμ of the Minkowski space M(3,1)/Spin(3,1) and orientational variables assigned by the elements zβα of the matrix Z ∈Spin(3,1).The field f (x, z) is the generating function for ordinary spin-tensor fields and admits a number of symmetries. Besides the Lorentz transformations (corresponding to the action of the Poincaré group from the left and interpretable as external symmetries), transformations of a reference frame associated with an orientable object (corresponding to the action of the Poincaré group from the right and interpretable as internal symmetries) are applicable to orientable objects. In addition to the six quantum numbers assigned by the Casimir operators and the left generators, quantum numbers arise here that are assigned by the right generators and are associated with internal symmetries. The assumption that the internal symmetries of the theory of orientable objects are local leads to gauge theories describing the electroweak and gravitational interactions

There are no comments on this title.

to post a comment.
Share