Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Covariant quantizations in plane and curved spaces J. L. Assirati, D. M. Gitman

By: Assirati, J. L. MContributor(s): Gitman, Dmitri MMaterial type: ArticleArticleSubject(s): ковариантные квантования | плоское пространство | криволинейное пространствоGenre/Form: статьи в журналах Online resources: Click here to access online In: The European physical journal C Vol. 77, № 7. P. 476 (1-38)Abstract: We present covariant quantization rules for nonsingular finite dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ∈(1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ=1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in Polar coordinates, we directly obtain a correct result.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: 43 назв.

We present covariant quantization rules for nonsingular finite dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ∈(1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ=1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in Polar coordinates, we directly obtain a correct result.

There are no comments on this title.

to post a comment.
Share