Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Isolation, characterization, and metal response of novel, acid-tolerant Penicillium spp. from extremely metal-rich waters at a mining site in Transbaikal (Siberia, Russia) L. B. Glukhova, Y. A. Frank, E. V. Danilova [et al.]

Contributor(s): Frank, Yuliya A | Danilova, Erzhena V | Avakyan, Marat R | Banks, David | Tuovinen, Olli H | Karnachuk, Olga V | Glukhova, Lubov BMaterial type: ArticleArticleSubject(s): биоминерализация | биберит | внеклеточные везикулы | экстремофильные грибы | мулуит | пенициллыGenre/Form: статьи в журналах Online resources: Click here to access online In: Microbial ecology Vol. 76, № 4. P. 911-924Abstract: The role of fungi in metal cycling in acidic environments has been little explored to date. In this study, two acid-tolerant and metal-resistant Penicillium isolates, strains ShG4B and ShG4C, were isolated from a mine site in the Transbaikal area of Siberia (Russia). Waters at the mine site were characterized by extremely high metal concentrations: up to 18 g l-1 Fe and > 2 g l-1 each of Cu, Zn, Al, and As. Both isolates were identified as Penicillium spp. by phylogenetic analyses and they grew well in Czapek medium acidified to pH 2.5. Resistance to Cu, Cd, Ni, Co, and arsenate was in the range of 1-10 g l-1. Further experiments with Penicillium strain ShG4C demonstrated that growth in Cu-containing media was accompanied by the precipitation of Cu-oxalate (moolooite) and the formation of extracellular vesicles enriched in Cu on the mycelia. Vesicles were greatly reduced in size in Cd-containing media and were not formed in the presence of Ni or Co. Cd-oxalate was detected as a crystalline solid phase in Cd-exposed mycelia. Hydrated Ni-sulfate (retgersite) and Co-sulfate (bieberite) were detected in mycelia grown in the presence of Ni and Co, respectively. The results demonstrated that acid-tolerant and metal-resistant Penicillium constitute a component in extremophilic microbiomes, contributing to organic matter breakdown and formation of secondary solid phases at pH ranges found in acid rock drainage.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: 74 назв.

The role of fungi in metal cycling in acidic environments has been little explored to date. In this study, two acid-tolerant and metal-resistant Penicillium isolates, strains ShG4B and ShG4C, were isolated from a mine site in the Transbaikal area of Siberia (Russia). Waters at the mine site were characterized by extremely high metal concentrations: up to 18 g l-1 Fe and > 2 g l-1 each of Cu, Zn, Al, and As. Both isolates were identified as Penicillium spp. by phylogenetic analyses and they grew well in Czapek medium acidified to pH 2.5. Resistance to Cu, Cd, Ni, Co, and arsenate was in the range of 1-10 g l-1. Further experiments with Penicillium strain ShG4C demonstrated that growth in Cu-containing media was accompanied by the precipitation of Cu-oxalate (moolooite) and the formation of extracellular vesicles enriched in Cu on the mycelia. Vesicles were greatly reduced in size in Cd-containing media and were not formed in the presence of Ni or Co. Cd-oxalate was detected as a crystalline solid phase in Cd-exposed mycelia. Hydrated Ni-sulfate (retgersite) and Co-sulfate (bieberite) were detected in mycelia grown in the presence of Ni and Co, respectively. The results demonstrated that acid-tolerant and metal-resistant Penicillium constitute a component in extremophilic microbiomes, contributing to organic matter breakdown and formation of secondary solid phases at pH ranges found in acid rock drainage.

There are no comments on this title.

to post a comment.
Share