TY - SER AU - Voytsekhovskiy,Alexander V. AU - Nesmelov,Sergey N. AU - Dzyadukh,Stanislav M. AU - Varavin,Vasilii S. AU - Dvoretsky,Sergei A. AU - Mikhailov,Nikolay N. AU - Sidorov,Georgiy Yu AU - Yakushev,Maxim V. AU - Marin,Denis V. TI - Influence of As+ Ion implantation on properties of MBE HgCdTe near-surface layer characterized by metal–insulator–semiconductor techniques KW - теллурид кадмия-ртути KW - молекулярно-лучевая эпитаксия KW - ионная имплантация KW - МДП-структуры KW - адмиттанс KW - варизонные слои KW - статьи в журналах N1 - Библиогр.: 47 назв N2 - The effect of As+ ion implantation on the electrical properties of the near-surface layer of n-HgCdTe films grown by molecular beam epitaxy (MBE) on Si (310) substrates was experimentally studied. A specific feature of MBE n-Hg0.78Cd0.22Te films is the presence of near-surface graded-gap layers with a high CdTe content, formed during epitaxial growth. The properties of as-grown films and films after As+ ion implantation with ion energy of 200 keV and fluence of 1014 cm−2 were studied. Post-implantation activation annealing was not performed. Test metal–insulator–semiconductor (MIS) structures were created based on as-grown and as-implanted samples by plasma-enhanced atomic layer deposition of Al2O3 insulator films. The admittance of the fabricated MIS structures was measured over a wide range of frequencies and temperatures. When determining the parameters of MIS structures, we used techniques that take into account the presence of near-surface graded-gap layers and series resistance of the HgCdTe film bulk, as well as the high density of slow surface states. It was found that, in as-implanted samples, the donor center concentration in the near-surface layer exceeds 1017 cm−3 and increases with distance from the HgCdTe-Al2O3 interface (at least up to 90 nm). After implantation, the conductivity of MBE HgCdTe film bulk increases markedly. It was shown that, for as-implanted samples, the generation rate of minority charge carriers in the MBE HgCdTe surface layer is significantly reduced, which indicates the appearance of a low defect layer with a thickness of at least 90 nm UR - http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000893721 ER -