Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Free convection in a triangular cavity filled with a porous medium saturated by a nanofluid: Buongiornos mathematical model M. A. Sheremet, I. Pop

By: Sheremet, Mikhail AContributor(s): Pop, Ioan, 1937-Material type: ArticleArticleSubject(s): свободная конвекция | наножидкости | пористые среды | Бонджиорно модельGenre/Form: статьи в журналах Online resources: Click here to access online In: International journal of numerical methods for heat & fluid flow Vol. 25, № 5. P. 1138-1161Abstract: Purpose – Steady-state free convection heat transfer in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno has been numerically analyzed. The paper aims to discuss this issue. Design/methodology/approach – The nanofluid model takes into account the Brownian diffusion and thermophoresis effects. The governing equations formulated in terms of the vorticity-stream function variables were solved by finite difference method. Findings – It has been found that the average Nusselt number is an increasing function of the Rayleigh and Lewis numbers and a decreasing function of Brownian motion, buoyancy-ratio and thermophoresis parameters. At the same time the average Sherwood number is an increasing function of the Rayleigh and Lewis numbers, Brownian motion and thermophoresis parameters and a decreasing function of buoyancy-ratio parameter. Originality/value – The present results are new and original for the heat transfer and fluid flow in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: с. 1158-1161

Purpose
– Steady-state free convection heat transfer in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno has been numerically analyzed. The paper aims to discuss this issue.

Design/methodology/approach
– The nanofluid model takes into account the Brownian diffusion and thermophoresis effects. The governing equations formulated in terms of the vorticity-stream function variables were solved by finite difference method.

Findings
– It has been found that the average Nusselt number is an increasing function of the Rayleigh and Lewis numbers and a decreasing function of Brownian motion, buoyancy-ratio and thermophoresis parameters. At the same time the average Sherwood number is an increasing function of the Rayleigh and Lewis numbers, Brownian motion and thermophoresis parameters and a decreasing function of buoyancy-ratio parameter.

Originality/value
– The present results are new and original for the heat transfer and fluid flow in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

There are no comments on this title.

to post a comment.
Share