Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Elastic properties of fullerites and diamond-like phases L. Kh. Rysaeva, J. A. Baimova, D. S. Lisovenko [et al.]

Contributor(s): Baimova, Julia A | Lisovenko, Dmitry S | Gorodtsov, Valentin A | Dmitriev, Sergey V | Rysaeva, Leysan KhMaterial type: ArticleArticleSubject(s): фуллериты | алмазоподобные структуры | упругие свойстваGenre/Form: статьи в журналах Online resources: Click here to access online In: Physica status solidi B Vol. 256, № 1. P. 1800049 (1-12)Abstract: Diamond‐like structures, that include sp2 and sp3 hybridized carbon atoms, are of considerable interest nowadays. In the present work, various carbon auxetic structures are studied by the combination of molecular dynamics (MD) and analytical approach. Two fullerites based on the fullerene C60 and fullerene‐like molecule C48 are investigated as well as diamond‐like structures based on other fullerene‐like molecules (called fulleranes), carbon nanotubes (called tubulanes) and graphene sheets. MD is used to find the equilibrium states of the structures and calculate compliance and stiffness coefficients for stable configurations. Analytical methods are used to calculate the engineering elastic coefficients (Young's modulus, Poisson's ratio, shear modulus and bulk modulus), and to study their transformation under rotation of the coordinate system. All the considered structures are partial auxetics with the negative value of Poisson's ratio for properly chosen tensile directions. It is shown that some of these structures, in a particular tension direction, have a very high Young's modulus, that is, 1852 GPa for tubulane TA6.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: 100 назв.

Diamond‐like structures, that include sp2 and sp3 hybridized carbon atoms, are of considerable interest nowadays. In the present work, various carbon auxetic structures are studied by the combination of molecular dynamics (MD) and analytical approach. Two fullerites based on the fullerene C60 and fullerene‐like molecule C48 are investigated as well as diamond‐like structures based on other fullerene‐like molecules (called fulleranes), carbon nanotubes (called tubulanes) and graphene sheets. MD is used to find the equilibrium states of the structures and calculate compliance and stiffness coefficients for stable configurations. Analytical methods are used to calculate the engineering elastic coefficients (Young's modulus, Poisson's ratio, shear modulus and bulk modulus), and to study their transformation under rotation of the coordinate system. All the considered structures are partial auxetics with the negative value of Poisson's ratio for properly chosen tensile directions. It is shown that some of these structures, in a particular tension direction, have a very high Young's modulus, that is, 1852 GPa for tubulane TA6.

There are no comments on this title.

to post a comment.
Share