Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

A mantle plume origin for the Palaeoproterozoic Circum-Superior Large Igneous Province T. J. Ciborowski, M. J. Minifie, A. C. Kerr [et.al.]

Contributor(s): Ciborowski, T. Jake R | Kerr, Andrew C | Ernst, Richard E | Baragar, Bob | Millar, Ian L | Minifie, Matthew JMaterial type: ArticleArticleSubject(s): мантийный плюм | протерозойGenre/Form: статьи в журналах Online resources: Click here to access online In: Precambrian research Vol. 294. P. 189-213Abstract: The Circum-Superior Large Igneous Province (LIP) consists predominantly of ultramafic-mafic lavas and sills with minor felsic components, distributed as various segments along the margins of the Superior Province craton. Ultramafic-mafic dykes and carbonatite complexes of the LIP also intrude the more central parts of the craton. Most of this magmatism occurred ∼1880 Ma. Previously a wide range of models have been proposed for the different segments of the CSLIP with the upper mantle as the source of magmatism. New major and trace element and Nd-Hf isotopic data reveal that the segments of the CSLIP can be treated as a single entity formed in a single tectonomagmatic environment. In contrast to most previous studies that have proposed a variety of geodynamic settings, the CSLIP is interpreted to have formed from a single mantle plume. Such an origin is consistent with the high MgO and Ni contents of the magmatic rocks, trace element signatures that similar to oceanic-plateaus and ocean island basalts and εNd-εHf isotopic signatures which are each more negative than those of the estimated depleted upper mantle at ∼1880 Ma. Further support for a mantle plume origin comes from calculated high degrees of partial melting, mantle potential temperatures significantly greater than estimated ambient Proterozoic mantle and the presence of a radiating dyke swarm. The location of most of the magmatic rocks along the Superior Province margins probably represents the deflection of plume material by the thick cratonic keel towards regions of thinner lithosphere at the craton margins. The primary magmas, generated by melting of the heterogeneous plume head, fractionated in magma chambers within the crust, and assimilated varying amounts of crustal material in the process.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: с. 210-213

The Circum-Superior Large Igneous Province (LIP) consists predominantly of ultramafic-mafic lavas and sills with minor felsic components, distributed as various segments along the margins of the Superior Province craton. Ultramafic-mafic dykes and carbonatite complexes of the LIP also intrude the more central parts of the craton. Most of this magmatism occurred ∼1880 Ma. Previously a wide range of models have been proposed for the different segments of the CSLIP with the upper mantle as the source of magmatism.

New major and trace element and Nd-Hf isotopic data reveal that the segments of the CSLIP can be treated as a single entity formed in a single tectonomagmatic environment. In contrast to most previous studies that have proposed a variety of geodynamic settings, the CSLIP is interpreted to have formed from a single mantle plume. Such an origin is consistent with the high MgO and Ni contents of the magmatic rocks, trace element signatures that similar to oceanic-plateaus and ocean island basalts and εNd-εHf isotopic signatures which are each more negative than those of the estimated depleted upper mantle at ∼1880 Ma. Further support for a mantle plume origin comes from calculated high degrees of partial melting, mantle potential temperatures significantly greater than estimated ambient Proterozoic mantle and the presence of a radiating dyke swarm. The location of most of the magmatic rocks along the Superior Province margins probably represents the deflection of plume material by the thick cratonic keel towards regions of thinner lithosphere at the craton margins. The primary magmas, generated by melting of the heterogeneous plume head, fractionated in magma chambers within the crust, and assimilated varying amounts of crustal material in the process.

There are no comments on this title.

to post a comment.
Share