Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Effect of external stresses on efficiency of dislocation sinks in BCC (Fe, V) and FCC (Cu) crystals A. B. Sivak, P. A. Sivak, V. A. Romanov, V. M. Chernov

Contributor(s): Sivak, A. B | Romanov, V. A | Chernov, Vyacheslav M | Sivak, P. AMaterial type: ArticleArticleSubject(s): дислокации | железо | Монте-Карло методGenre/Form: статьи в журналах Online resources: Click here to access online In: Inorganic materials: applied research Vol. 6, № 5. P. 466-472Abstract: The efficiency of linear sinks for selfpoint defects (SPDs) elastically interacting (dislocations) and not interacting with sinks with the density of 3 × 1014 m–2 is calculated for BCC (Fe, V) and FCC (Cu) crystals at the temperature 293 K using the object kinetic Monte Carlo technique, depending on type and value of applied mechanical load (up to 200 MPa) and types of linear sinks. Full straight dislocations in slip systems [111](1 0), [111](11 ), [100](001), and [100](011) for Fe and V and [100](001) for Cu are considered for dislocation sinks (DSs). Orientations of noninteracting linear sinks (NILSs) coincide with those of DSs. Interaction of SPDs with internal (dislocation) and external stress fields is calculated within the framework of anisotropic linear theory of elasticity. Relative changes in efficiency of different codirectional linear sinks (either interacting or not interacting with SPDs) under action of applied stress are approximately identical under low stress. Radiation creep rates are calculated for the considered crystals under uniaxial stress in the stationary regime of Frenkel pairs generation. The creep rate strongly depends on the loading direction and Burgers vector of dislocations in Fe and V, and it is almost independent of these parameters in Cu. At the same generation rate of Frenkel pairs, the radiation creep rate averaged over all loading directions is significantly higher in BCC (Fe, V) crystals containing dislocations with the Burgers vector a/2〈111〉 than in FCC (Cu) crystals.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: 19 назв.

The efficiency of linear sinks for selfpoint defects (SPDs) elastically interacting (dislocations) and not interacting with sinks with the density of 3 × 1014 m–2 is calculated for BCC (Fe, V) and FCC (Cu) crystals at the temperature 293 K using the object kinetic Monte Carlo technique, depending on type and value of applied mechanical load (up to 200 MPa) and types of linear sinks. Full straight dislocations in slip systems [111](1 0), [111](11 ), [100](001), and [100](011) for Fe and V and [100](001) for Cu are considered for dislocation sinks (DSs). Orientations of noninteracting linear sinks (NILSs) coincide with those of DSs. Interaction of SPDs with internal (dislocation) and external stress fields is calculated within the framework of anisotropic linear theory of elasticity. Relative changes in efficiency of different codirectional linear sinks (either interacting or not interacting with SPDs) under action of applied stress are approximately identical under low stress. Radiation creep rates are calculated for the considered crystals under uniaxial stress in the stationary regime of Frenkel pairs generation. The creep rate strongly depends on the loading direction and Burgers vector of dislocations in Fe and V, and it is almost independent of these parameters in Cu. At the same generation rate of Frenkel pairs, the radiation creep rate averaged over all loading directions is significantly higher in BCC (Fe, V) crystals containing dislocations with the Burgers vector a/2〈111〉 than in FCC (Cu) crystals.

There are no comments on this title.

to post a comment.
Share