Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Polishing of Diamond Materials [electronic resource] : Mechanisms, Modeling and Implementation / by Yiqing Chen, Liangchi Zhang.

By: Chen, Yiqing [author.]Contributor(s): Zhang, Liangchi [author.] | SpringerLink (Online service)Material type: TextTextSeries: Engineering Materials and ProcessesPublication details: London : Springer London : Imprint: Springer, 2013Description: XI, 174 p. 95 illus., 1 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781849964081Subject(s): engineering | Materials | Structural control (Engineering) | Surfaces (Physics) | Engineering | Machinery and Machine Elements | Operating Procedures, Materials Treatment | Continuum Mechanics and Mechanics of Materials | Ceramics, Glass, Composites, Natural Methods | Characterization and Evaluation of MaterialsDDC classification: 621.8 LOC classification: TA213-215Online resources: Click here to access online
Contents:
Understanding of Material Removal Mechanisms -- Mechanical Polishing -- Chemo-mechanical Polishing -- Thermo-chemical Polishing -- High Energy Beam Polishing -- Electric Discharge Machining (EDM) Polishing -- Dynamic Friction Polishing -- Comparison of Various Polishing Techniques.
In: Springer eBooksSummary: Diamond has a unique combination of properties, such as the highest hardness and thermal conductivity among any known material, high electrical resistivity, a large optical band gap and a high transmission, good resistance to chemical erosion, low adhesion and friction, and extremely low thermal expansion coefficient. As such, diamond has been a desirable material in a wide range of applications in mechanical, chemical, optical, thermal and electrical engineering. In many of the cases, the surface of a diamond component or element must have a superior finish, often down to a surface roughness of nanometers. Nevertheless, due to its extreme hardness and chemical inertness, the polishing of diamond and its composites has been a sophisticated process. Polishing of Diamond Materials will provide a state-of-the-art analysis, both theoretically and experimentally, of the most commonly used polishing techniques for mono/poly-crystalline diamond and chemical vapour deposition (CVD) diamond films, including mechanical, chemo-mechanical, thermo-chemical, high energy beam, dynamic friction and other polishing techniques. The in-depth discussions will be on the polishing mechanisms, possible modelling, material removal rate and the quality control of these techniques. A comparison of their advantages and drawbacks will be carried out to provide the reader with a useful guideline for the selection and implementation of these polishing techniques. Polishing of Diamond Materials will be of interest to researchers and engineers in hard materials and precision manufacturing, industry diamond suppliers, diamond jewellery suppliers and postgraduate students in the area of precision manufacturing.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Understanding of Material Removal Mechanisms -- Mechanical Polishing -- Chemo-mechanical Polishing -- Thermo-chemical Polishing -- High Energy Beam Polishing -- Electric Discharge Machining (EDM) Polishing -- Dynamic Friction Polishing -- Comparison of Various Polishing Techniques.

Diamond has a unique combination of properties, such as the highest hardness and thermal conductivity among any known material, high electrical resistivity, a large optical band gap and a high transmission, good resistance to chemical erosion, low adhesion and friction, and extremely low thermal expansion coefficient. As such, diamond has been a desirable material in a wide range of applications in mechanical, chemical, optical, thermal and electrical engineering. In many of the cases, the surface of a diamond component or element must have a superior finish, often down to a surface roughness of nanometers. Nevertheless, due to its extreme hardness and chemical inertness, the polishing of diamond and its composites has been a sophisticated process. Polishing of Diamond Materials will provide a state-of-the-art analysis, both theoretically and experimentally, of the most commonly used polishing techniques for mono/poly-crystalline diamond and chemical vapour deposition (CVD) diamond films, including mechanical, chemo-mechanical, thermo-chemical, high energy beam, dynamic friction and other polishing techniques. The in-depth discussions will be on the polishing mechanisms, possible modelling, material removal rate and the quality control of these techniques. A comparison of their advantages and drawbacks will be carried out to provide the reader with a useful guideline for the selection and implementation of these polishing techniques. Polishing of Diamond Materials will be of interest to researchers and engineers in hard materials and precision manufacturing, industry diamond suppliers, diamond jewellery suppliers and postgraduate students in the area of precision manufacturing.

There are no comments on this title.

to post a comment.
Share