Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Carbon Nanotubes as Platforms for Biosensors with Electrochemical and Electronic Transduction electronic resource by Mercè Pacios Pujadó.

By: Pacios Pujadó, Mercè [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublication details: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012Description: XIX, 205 p. 127 illus., 29 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783642314216Subject(s): chemistry | Analytical biochemistry | Nanochemistry | Nanotechnology | Chemistry | Nanochemistry | Nanotechnology | Electrochemistry | Analytical Chemistry | SemiconductorsDDC classification: 541.2 LOC classification: QD478Online resources: Click here to access online
Contents:
Objectives -- Experimental -- Results and Discussion: Impact of nanotechnology in sensors -- Results and Discussion: Response of different carbon platforms as electrochemical transducers -- Results and Discussion: Biorecognition processes on different CNT platforms -- Results and Discussion: Electronic response of Carbon Nanotube Field-Effect Transistors (CNT-FETs) to Biorecognition Processes -- Conclusions -- Perspectives.
In: Springer eBooksSummary: The thesis by Mercè Pacios exploits properties of carbon nanotubes to design novel nanodevices. The prominent electrochemical properties of carbon nanotubes are used to design diverse electrode configurations. In combination with the chemical properties and (bio)functionalization versatility, these materials prove to be very appropriate for the development of electrochemical biosensors. Furthermore, this work also evaluates the semiconductor character of carbon nanotubes (CNT) for sensor technology by using a field effect transistor configuration (FET). The CNT-FET device has been optimized for operating in liquid environments. These electrochemical and electronic CNT devices are highly promising for biomolecule sensing and for the monitoring of biological processes, which can in the future lead to applications for rapid and simple diagnostics in fields such as biotechnology, clinical and environmental research.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Objectives -- Experimental -- Results and Discussion: Impact of nanotechnology in sensors -- Results and Discussion: Response of different carbon platforms as electrochemical transducers -- Results and Discussion: Biorecognition processes on different CNT platforms -- Results and Discussion: Electronic response of Carbon Nanotube Field-Effect Transistors (CNT-FETs) to Biorecognition Processes -- Conclusions -- Perspectives.

The thesis by Mercè Pacios exploits properties of carbon nanotubes to design novel nanodevices. The prominent electrochemical properties of carbon nanotubes are used to design diverse electrode configurations. In combination with the chemical properties and (bio)functionalization versatility, these materials prove to be very appropriate for the development of electrochemical biosensors. Furthermore, this work also evaluates the semiconductor character of carbon nanotubes (CNT) for sensor technology by using a field effect transistor configuration (FET). The CNT-FET device has been optimized for operating in liquid environments. These electrochemical and electronic CNT devices are highly promising for biomolecule sensing and for the monitoring of biological processes, which can in the future lead to applications for rapid and simple diagnostics in fields such as biotechnology, clinical and environmental research.

There are no comments on this title.

to post a comment.
Share