Scientific Library of Tomsk State University

   E-catalog        

Normal view MARC view

Collisional Narrowing and Dynamical Decoupling in a Dense Ensemble of Cold Atoms electronic resource by Yoav Sagi.

By: Sagi, Yoav [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublication details: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012Description: XIII, 81 p. 43 illus., 20 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783642296055Subject(s): physics | Quantum theory | Physics | Atomic, Molecular, Optical and Plasma Physics | Quantum Information Technology, Spintronics | Quantum Physics | Low Temperature PhysicsDDC classification: 539 LOC classification: QC170-197QC717.6-718.8Online resources: Click here to access online
Contents:
The Experimental Setup -- Theoretical Framework -- Spectral Narrowing due to Elastic Collisions -- The Ensemble Spectrum with an Arbitrary Detuning Distribution -- Motional Broadening in Ensembles with Heavy-tail Detuning Distribution -- Suppression of Collisional Decoherence by Dynamical Decoupling.
In: Springer eBooksSummary: Ultra-cold atomic ensembles have emerged in recent years as a powerful tool in many-body physics research, quantum information science and metrology. This thesis presents an experimental and theoretical study of the coherent properties of trapped atomic ensembles at high densities, which are essential to many of the aforementioned applications. The study focuses on how inter-particle interactions modify the ensemble coherence dynamics, and whether it is possible to extend the coherence time by means of external control. The thesis presents a theoretical model which explains the effect of elastic collision of the coherence dynamics and then reports on experiments which test this model successfully in the lab. Furthermore, the work includes the first implementation of dynamical decoupling with ultra-cold atomic ensembles. It is demonstrated experimentally that by using dynamical decoupling the coherence time can be extended 20-fold. This has a great potential to increase the usefulness of these ensembles for quantum computation.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

The Experimental Setup -- Theoretical Framework -- Spectral Narrowing due to Elastic Collisions -- The Ensemble Spectrum with an Arbitrary Detuning Distribution -- Motional Broadening in Ensembles with Heavy-tail Detuning Distribution -- Suppression of Collisional Decoherence by Dynamical Decoupling.

Ultra-cold atomic ensembles have emerged in recent years as a powerful tool in many-body physics research, quantum information science and metrology. This thesis presents an experimental and theoretical study of the coherent properties of trapped atomic ensembles at high densities, which are essential to many of the aforementioned applications. The study focuses on how inter-particle interactions modify the ensemble coherence dynamics, and whether it is possible to extend the coherence time by means of external control. The thesis presents a theoretical model which explains the effect of elastic collision of the coherence dynamics and then reports on experiments which test this model successfully in the lab. Furthermore, the work includes the first implementation of dynamical decoupling with ultra-cold atomic ensembles. It is demonstrated experimentally that by using dynamical decoupling the coherence time can be extended 20-fold. This has a great potential to increase the usefulness of these ensembles for quantum computation.

There are no comments on this title.

to post a comment.
Share